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that they are something new to learn. The best way to overcome this difficulty is
to have a system that is simple in its organization and familiar in its language.
The facilities of the debugging system should be organized into a few basic cate-
gories of function, which should closely reflect common user tasks. This simple
organization contributes greatly to ease of training and ease of use.

The user interaction should make use of full-screen displays and window-
ing systems as much as possible. The primary advantage offered by such an
interface is that a great deal of information can be displayed and changed eas-
ily and quickly. With menus and full-screen editors, the user has far less infor-
mation to enter and remember. This can greatly contribute to the perceived
friendliness of an interactive debugging system.

If the tasks a user needs to perform are reflected in the organization of
menus, then the system will feel very natural to use. Menus should have titles
that identify the task they help perform. Directions should precede any
choices available to the user. Techniques such as indentation should be used to
help separate portions of the menu. Often the most frustrating aspect of menu
systems is their lack of direct routing. It should be possible to go dlrectly to the
menu that the user wants to select without having to retrace an entire hierar-
chy of menus.

The use of full-screen displays and techniques such as menus is highly
desirable. However, a debugging system should also support interactive
users when a full-screen terminal device is not present. Every action a user
can take at a full-screen terminal should have an equivalent action in a linear
debugging language. For example, there should be complete functional equiv-
alence between commands and menus.

The command language should have a clear, logical, simple_syntax. It
should also be as similar to the programming language(s) as possible.
Commands should be simple rather than compound and should require as
few parameters as possible. There should be a consistent use of parameter
names across the set of commands. Parameters should automatically be
checked for errors in such attributes as type and range of values. Defaults
should be prowded for most parameters, and the user should be able to deter-
mine when such defaults have been applied.

Command formats should be as flexible as possible. The command lan-
guage should minimize the use of such punctuation as parentheses, slashes,
quotation i;marks, and other special characters. Where possible, information
should be invoked through prompting techniques.

Any good interactive system should have an on-line HELP facility. Even a
list of the available commands can provide valuable assistance for the inexpe-
rienced or occasional user. For more advanced users, the HELP function can be
multi-level and quite specific. One powerful use of HELP with menus is to
provide explanatory text for all options present on the screen. These can be
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selectable by option number or name, or by filling the choice slot with a ques-
tion mark. HELP should be accessible from any state of the debugging session.
The more difficult the situation, the more likely it is that the user will need
such information.

EXERCISES

1. Design and implement a Text editor with the following options.

(i) create (v) delete (ix) cut
(ii) open (vi) replace (x) paste
(iii) save (vii) move
(iv) insert (viii) copy

2. Design and implment a debugger.
3. Design and implement DDL, DML and DCL operations.



Chapter 8

Software Engineering Issues

i

This chapter contains an introduction to software engineering concepts and
techniques. A full treatment of such subjects is beyond the scope of this book.
Therefore, our discussion will be focused primarily on techniques that might be
most useful in designing and implementing a piece of system software such as
an assembler. The presentation of this material is relatively independent of the
rest of the text; this chapter can be read at any time after the introduction to
assemblers in Section 2.1. You may find it useful to refer to the material in this
chapter as you read about the other types of system software in this book, and
consider how the methods discussed could be applied in those situations as well.

‘Section 8.1 presents an intreduction to software engineering concepts and
terminology, in order to give a frame of reference for the material that follows.
Section (8.2 discusses the writing of specifications to define precisely what a
piece of software is to accomplish.

Sectiion 8.3 briefly discusses one approach to procedural software design.
We introduce data flow diagrams as a representation of the functioning of a
system, and illustrate the development of a data flow diagram for a simple
assembler. We then demonstrate how the data flow diagram can be used in
designing the assembler as a set of relatively independent modules.

Section 8.4 introduces the object-oriented approach to software design. We
discuss some of the central principles of object-oriented programming, and
briefly indicate how these principles can be used in designing a system such
an an assembler.

Finally, Section 8.5 discusses strategies for testing the individual components
and the complete system.

8.1 INTRODUCTION TO SOFTWARE ENGINEERING
CONCEPTS

This section contains a brief overview of software engineering terminol-
ogy and ideas. Section 8.1.1 describes some of the problems that led to the
development of software engineering techniques and presents several differ-
ent definitions of the term software engineering. Section 8.1.2 discusses the
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stages in the software development process and mentions some of the most
important issues related to these stages. Section 8.1.3 continues this discussion
into the important phase of software maintenance and evolution. !

8.1.1 Background and Definitions

The development of software engineering tools and methods began in the late
1960s, largely in response to what many authors have called “the software
crisis.” This crisis arose from the rapid increase in the size and complexity of
computer applications. Systems became much too large and complicated to be
programmed by one or two people; instead, large project teams were required.
In some extremely large systems, it was difficult for any one individual even
to have a full intellectual grasp of the entire project. The problems in manag-
ing such a large development project led to increases in development costs
and decreases in productivity. Large software systems seemed always to be
delivered late, to cost more than anticipated, and to have hidden flaws. For an
excellent discussion of such problems, see Brooks (1995). ‘

We can see evidence of the continuing problems today. The purchaser of a
new automobile, television set, or personal computer usually expects that the
product will correctly perform its intended function. On the other hand, the
first releases of a new operating system, compiler, or other software product
almost always contain major “bugs” and do not work properly for some users
and in some situations. The software then goes through a series of different
versions or “fixes” designed to resolve these problems. Even in latef releases,
however, it is usual to find new flaws from time to time.

The discipline now known as software engineering evolved gradually in
response to the problems of cost, productivity, and reliability created by
increasingly large and complex software systems. Software engineering has
been defined in many different ways—for example,

the establishment and use of sound engineering principles in order to
obtain, economically, software that is reliable and works efficiently on
real machines (Bauer, 1972);

the process of creating software systems [using] techniques that reduce
high software cost and complexity while increasing reliability and modi-
fiability (Ramamoorthy and Siyan, 1983);

the application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the appli-
cation of engineering to software (IEEE, 1990).
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Many useful tools and techniques have been developed to help with these
problems of reliability and cost. For discussions of some of these methods, see
Sommerville (1996), Ng and Yeh (1990), and Lamb (1988). In spite of the
advances, however, the problems are far from completely solved. Brooks
(1995) gives an interesting discussion of the present state of software engineer-
ing and his view of the prospects for the future.

8.1.2 The Software Development Process

This section briefly discusses the various steps in the software development
process. Figure 8.1 shows the oldest and best-known model for this process—
the so-called waterfall software life-cycle model. As we shall see, this model is
an oversimplification of the actual software development cycle. Nevertheless,
it serves as a useful starting point for our discussions.

In the waterfall model, the software development effort is pictured as
flowing through a sequenc e of different stages, much like a waterfall moving
from one level to the next. In the first stage, requirements analysis, the task is to

Requirements
analysis

'

System
specification

y

i System
design

‘

Implementation

!

System
testing

y

Maintenance

Figure 8.1 Software life cycle (waterfall model).
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determine what the software system must do. The focus of this stage is on the
needs of the users of the system, not on the software solution. That is, the
requirements specify what the system must do, not how it will be done. In some
cases, it is necessary to do much analysis and consultation with the prospec-
tive users—there are often hidden assumptions or constraints that must be
made precise before the system can be constructed. The result of the require-
ments analysis stage is a requirements document that states clearly the intent,
properties, and constraints of the desired system in terms that can be under-
stood by both the end user and the system developer.

The goal of the second stage, system specification, is to formulate a precise
description of the desired system in software development terms. The infor-
mation contained in the system specification is similar to that contained in the
requirements document. The focus is still on what functions the system must
perform, rather than on how these functions are to be accomplished. (Many
authors, in fact, consider requirements analysis and system spec1f1cat10n to
be different aspects of the same stage in the development process.) However,
the approach is somewhat different. The requirements analysis step looks at
the system from the point of view of the end user; the system specifications are
written from the point of view of system developers and programmers, using
software development terminology. Thus, the system specifications can be
considered as a computer-oriented interpretation of the requirements docu-
ment. We will consider examples of such specifications in Section 8.2.

The first two stages of the software development process are primarily
concerned with understanding and describing the problem to be solved. The
third stage, system design, begins to address the solution itself. The system
design document outlines the most significant characteristics of the software
to be developed. If a procedural approach is being taken, the system design
may describe the most important data structures and algorithms to be used and
specify how the software is to be divided into modules. If an object-oriented
approach is taken, the system design may describe the objects defined in the
system and the methods that can be invoked on each object. Smaller and less
significant details are omitted—the goal is a high-level description of how
the software will be constructed and how the various parts will work together
to perform the desired function.

The system designer should attempt to make decisions that will minimize
the problems of cost, complexity, and reliability that we have mentioned previ-
ously. In a procedural design, for example, the software might be divided into
a set of relatively independent modules. An effort should be made to keep
each module to a manageable size and complexity. The modular structure
should also be designed so that the overall system is as easy as possible to
implement, test, and modify. We will consider an example of this modular
design process in Section 8.3.



Software Engineering Issues

After the system design is complete, the fourth step, implementation, can
begin. In this stage of the development process, the individual modules or
objects described by the design process are coded and preliminary testing is
done. Although this step is what most people think of as “programming,” it is
actually a relatively small part of the software development effort. According
to most estimates, coding should take only 10 to 20 percent of the effort
involved in building a system; system design and testing consume the rest of
the time (Marciniak, 1994). One of the most common mistakes made by inex-
perienced system developers is to begin coding too soon, before adequate
planning has been done.

The ‘actual coding of the system may use a variety of well-known tech-
niques such as structured programming, stepwise refinement, and object-
oriented programming. Good discussions of these topics, and of other methods
for writing reliable software, are given by Sommerville (1996) and Ng and Yeh
(1990). Thorough documentation for each part of the system is also extremely
important. This documentation should include (at the least) a precise descrip-
tion of input and output parameters, a basic description of how the module or
object works, and important details concerning any algorithms and data struc-
tures used. The style used for programming and documentation should be
consistent for all of the modules of the system.

The final phase, system testing, is usually the most expensive and time-
consuming part of the software development process. According to most esti-
mates, testing requires 30 to 50 percent of the total development effort
(Marciniak, 1994). Actually, several different levels of testing are involved.
Individual parts of the system must be tested to be sure that they correctly
perform their functions. The communications between the parts must be
tested to be sure that they work properly together. And the entire system must
be tested to ensure that it meets its overall specifications. Because the parts of
the system are related to each other in a variety of ways, these types of testing
overlap to some extent. In Section 8.5, we will discuss different strategies for
performing these testing tasks.

The waterfall model of software development treats each stage as though it
were completed before the following stage begins. In reality, this is often not
the case. For example, the system specification process may reveal that certain
of the requirements are incomplete or inconsistent; it is then necessary to per-
form more requirements analysis. During implementation or testing, flaws in
the design may be discovered. Thus, there is a temporary “reverse” flow of
information to earlier stages. After testing is complete, the entire process often
starts over to develop a new version, or release, of the software.

In spite of its limitations, however, the waterfall model does present a
rational sequence of events in the system development process. Parnas and
Clements (1986) suggest that we should attempt to follow this model as
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closely as possible and document the system development according to its
stages, even though the actual software development may include the kind of
backtracking just described.

Various authors have proposed other models of the software development
process. For discussions of some of these, see Sommerville (1996).

8.1.3 Software Maintenance and Evolution

The last phase of the software life-cycle model shown in Fig. 8.1 is maintenance.
It is tempting to believe that most of the work is done after a system has been
designed, implemented, and tested. However, this is often far from true.
Systems that are used over a long period of time inevitably must change in
order to meet changing requirements. According to some estimatesj mainte-
nance can account for as much as two-thirds of the total cost of software
(Sommerville, 1996). i

Lamb (1988) identifies four major categories of software mamtenance
Corrective maintenance fixes errors in the original system design and implemen-
tation—that is, cases in which the system does not satisfy the original require-
ments. Perfective maintenance improves the system by addressing problems that
do not involve violations of the original requirements—for example, making
the system more efficient or improving the user interface. Adaptive maintenance
changes the system in order to meet changing environments and evolving user
needs. Enhancement adds new facilities to the system that were not a part of
the original requirements and were not planned for in the original design.

Maintenance can be made much easier and less costly by the presence of
good documentation. The documents created during the system development
(requirements, specifications, system design, and module or object documen-
tation) should be kept throughout the lifetime of the system. It is very impor-
tant to keep these documents updated as the system evolves (for example,
when requirements change or new modules are added). There may be docu-
mentation that explicitly addresses questions of maintenance. For example, the
designers of a system often plan for the likelihood of future change, identify-
ing points where code or data items can easily be added or modified to meet
changing requirements. Sample executions of the system should also be a part
of the documentation. The test cases originally used during system develop-
ment should be preserved so that these tests can be repeated on the modified
version of the system. i

As the system is modified, it is extremely important to maintain careful
control over all of the changes being made. A software system may go through
many different versions, or releases. Each such version typically involves a set
of related changes to requirements, specifications, design documents, code,
and user manuals. Changes to one part of the system need to be carefully
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coordinated with changes to other parts. The process of controlling all of these -

changes to avoid confusion and interference is known as configuration manage-
ment. For further discussions of configuration management issues, see Lamb
(1988) and Sommerville (1996).

8.2, SYSTEM SPECIFICATIONS

In this section, we will examine system specifications in more detail. Section 8.2.1
discusses some of the properties that specifications should possess and
examines the relationship of the specifications to other parts of the software
development process. Section 8.2.2 describes several different types of specifi-
cations and gives examples of such specifications for a simple assembler.
Section 8.2.3 discusses the important topic of error handling and shows how
this subject is related to the system specifications.

8.2.1 Goals of System Specifications

As discussed in the preceding section, the system specification process lies
between the steps of requirements analysis and system design. The require-
ments document is primarily concerned with the end user’s view of the sys-
tem:and is usually written at a high level, with less important details omitted.
During system specification, these details must be supplied to provide a basis
for the system design to follow. The specifications must contain a complete
description of all of the functions and constraints of the desired software sys-
tem, They must be clearly and precisely written, must be consistent, and must
contain all of the information needed to write and test the software. In order to
create such specifications, the developers must examine the purpose and goals
of the system more closely. The process of formulating precise system specifi-
cations often reveals areas where the requirements are incomplete or ambigu-
ous;.this requires a temporary return to the requirements analysis stage.
Although the system specifications contain more detailed information than
the requirements document, they are still concerned with what the system must
do, rather than with how it will be done. The selection of algorithms, data repre-
sentations, etc., belongs to the following phase, system design. However, it is
important that the specifications explicitly address issues such as the perfor-
mance needed from the system and how the software should interact with the
users. During design, it is often necessary to make choices between conflicting
goals. For example, one choice of data structures might lead to more efficient
processing but consume more storage space; a different choice might save
space but require more processing time. The selection of one type of user inter-
face might optimize the speed of data entry but require more initial training
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time for the users. It is important that the system designers make such choices
in a way that is consistent with the overall objectives of the system and the
needs of the end users. Including such information in the requirements pro-
vides a basis for making the design decisions to follow. :

The system specifications also form the basis for the system testing phase.
Therefore, they must be written in a way that is objectively testable. In the case
of “general” requirements such as efficiency and cost of operation, it is impor-
tant to specify how these qualities will be measured and what will constitute
acceptable performance.

As we can see, the system specifications are related closely to the other
parts of the software development process. It is essential to maintain a record
of these relationships so that the overall system documentation is coherent
and consistent. For example, each specification should be explicitly connected
with the appropriate item in the requirements document. Later in the process,
design decisions may contain cross-references to the specifications that formed
the basis for the decision. In the testing phase, each test case may refer explic-
itly to the specification that is being verified.

8.2.2 Types of Specifications

In this section, we will give examples of system specifications for an assem-
bler. These examples are not intended to be a complete set of specifications for
even a very simple assembler. Instead, they are intended to illustrate some of
the possible kinds of specifications that may be written. ‘
Figure 8.2 shows several different types of specifications. Specifications 1-6
give constraints on the input to the system—in this case, the source program.
Such constraints describe the form and content of allowable inputs. A com-
plete set of these specifications would precisely define the set of input condi-
tions that the assembler must handle. Specification 1 deals with the format of
the input, describing how some of the subfields of the source statement are
positioned. Specification 2 gives rules for the formation of labels; such lexical
rules determine the algorithm that must be used in scanning the input charac-
ters. (You may want to refer to the discussion of lexical analysis in Section 5.1.2.)
Specification 3 describes the set of entries that are allowed to occur in a par-
ticular subfield, thus giving constraints on the content of the input.
Specifications 4 and 5 give similar content restrictions that are also context-
dependent. In this case, the allowable entries in a certain portion of the input
(the Operand field) depend on the context in which the entry occurs—that is,
the value in the Operation field of the same statement. Specification 6
describes a type of constraint commonly known as an implementation restric-
tion. Such restrictions allow the system designer to define data structures that
are large enough to accommodate the full range of anticipated inputs. Most
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Input specifications
1. The label on a source program statement, if present, must begin in column 1 of the
statement. The Operation field is separated from the Label field by at least one blank;
if no label is present, the Operation field may begin anywhere after column 1.

2. Labels may be from 1 to 6 characters in length. The first character must be alphabetic
~ (A-2); each of the remaining characters may be alphabetic or numeric (0-9).

3. The Operation field must contain one of the SIC mnemonic opcodes, or one of the
assembler directives BYTE, WORD, RESB, RESW, START, END.

4. An instruction operand may be either a symbol (which appears as a label in the pro-
gram) or a hexadecimal number that represents an actual machine address.
Hexadecimal numbers used in this way must begin with a leading zero (to distinguish
them from symbols) and must be between 0 and OFFFF in value.

5. A hexadecimal string operand in a BYTE directive must be of the form X’hhh...", where
each h is a character that represents a hexadecimal digit (0-9 or A-F). There must be
an even number of such hex digits. The maximum length of the string is 32 hex digits
(representing 16 bytes of memory).

6. The source program may contain as many as 500 distinct labels.

Output specifications

7. The assembly listing should show each source program statement (inciuding any com-
ments), together with the current location counter value, the object code generated,
and any error messages.

8. The object program should occupy no address greater than hexadecimal FFFF.

9. The object program should not be generated if any assembly errors are detected.

Quality specifications
10. The assembler should be able to process at least 50 source statements per second of
compute time.

11. Experienced SIC programmers using this assembler for the first time should be able to
understand at least 90 percent of all error messages without assistance.

12. The assembler should fail to process source programs correctly in no more than 0.01
percent of all executions.

Figure 8.2 Sample program specifications.

system software involves a number of such assumptions—for example, the
maximum number of concurrent jobs to be run by an operating system or the
maximum nesting depth of blocks in a program being compiled.

Output specifications are intended to define precisely the results to be pro-
duced by the system. Such specifications may describe the form and content of
the desired output (specification 7) or the conditions under which the output
is to be generated (specification 9). They may also specify constraints on the
values being output (as in specification 8). Although the output values are
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generally a consequence of the input, such restrictions are sometimes easier to
state and check with respect to the output.

Specifications 10~12 are concerned with global characteristics of the soft-
ware system, such as efficiency (specification 10), ease of use (specification 11),
and reliability (specification 12). Such quality specifications describe overall
expectations of the desired system and its operational properties. Other attrib-
utes that are often the subject of quality specifications are response time,
portability, operating cost, maintainability, and training time for new users.

It is important to write quality specifications that can be objectively tested.
Generalities like “efficient,” “reliable,” and “easy to use” may represent
worthwhile goals for the system; however, without quantitative measures, it
would be difficult to decide whether or not the specification had been met. In
some cases, it is desirable to specify both a desired level of quality and a mini-
mum acceptable level. For example, the desired frequency of system failures
(as in specification 12) might be zero. However, it would be unrealistic to reject
an entire system for a single failure. In some cases, the desired qualities for a
system might be in conflict. For example, a system that is designed to be as
efficient as possible might not be particularly easy to use. Features designed to
make the system attractive for new users, such as detailed explanations and
menus, might become cumbersome and annoying for experienced users.
Therefore, it is often desirable to specify the relative importance of the various
qualities desired in the system. This provides the system designer with the
information needed to make intelligent choices that are in line with the overall
goals for the system. Further discussions and examples of quality specifica-
tions may be found in Sommerville (1996). :

Specifications often involve conditions or combinations of conditions that
cannot conveniently be expressed in simple narrative sentences like those in
Fig. 8.2. For example, a specification like number 4 in Fig. 8.2 might ade-
quately describe the contents of an operand field for a SIC (standard version)
program. In this case, an operand can be only a symbol or a hexadecimal con-
stant, and issues such as relative addressing and program relocation do not
arise. For a SIC/XE assembler, on the other hand, the set of conditions to be
tested in processing an operand field are much more complex.

Figure 8.3 shows a sample specification for a SIC/XE assembler, expressed
in decision table form. The upper portion of this table gives a set of conditions,
and the lower portion describes a related set of actions to be taken, based on the
conditions. The first column of the table lists the conditions and actions. Each
column after the first describes a rule that specifies which actions to take under
a particular combination of conditions. (You may want to refer to Section 2.2 in
order to understand the logic being expressed in this specification.)

Thus, for example, Rule R5 states that if (1) the operand value type is “rel”
(relative), (2) extended format is not specified in the instruction, and (3) the
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Rule
Conditions/actions | R1 | R2 | R3 | R4 {R5 [ R6 | R7 |R8 R9
Operand vaiue type abs | abs | abs | abs | rel | rel | rel | rel | neither abs
' nor rel

Operand value

< 40967 Y Y N N|—|—|—1|— —
Extended format

specified? N Y N Y N | N|NI}Y —
Operand in range for

PC-relative? ~ -1 —1—=—1Y N N | — —
Operand in range for

base-relative? - -} -] —}—=1Y N | — —_
Set bit P to oo o1 1|o 0
Set bit B to 0 0 0 0 1 0
Set bit E to 0 1 1 0 0 1
Flag for relocation X
Error X X X

Figure 8.3 Sample decision table specification.

operand is in range for PC-relative addressing, then the assembler should (1) set
bit P to 1, (2) set bit B to 0, and (3) set bit E to 0. Rule R7 states that if (1) the
operand value type is “rel”, (2) extended format is not specified, (3) the operand
is not in range for PC relative addressing, and (4) the operand is not in range for
base-relative addressing, then an error has been detected. The entry “—"” as part
of a rule indicates that the corresponding condition is irrelevant or does not
apply to that rule. Of course, if this decision table were used as a part of the sys-
tem specification for an assembler, other specifications would be needed to
define precisely what is meant by such terms as “absolute operand,” “relative
operand,” and “in range for PC-relative addressing.” Further information about
the construction and use of decision tables may be found in Gilbert (1983).

8.2.3 Error Conditions

One of the most frequently overlooked aspects of software writing is the
handling of error conditions. It is much easier to write a program that simply
processes valid inputs properly than it is to write one that detects and
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processes erroneous input as well. However, effective handling of error condi-
tions is essential to the creation of a usable software product.

Properly written specifications implicitly define what classes of inputs are
not acceptable. For example, specification 2 in Fig. 8.2 implies that a label
should be considered invalid if it (1) is longer than six characters, (2) does not v
begin with an alphabetic character, or (3) contains any character that is not
either alphabetic or numeric. Figure 8.4 shows a number of input errors
derived from the input specifications in Fig. 8.2. Other erroneous input condi-
tions may be explicitly defined by the specifications, as in the decision table in
Fig. 8.3. It is extremely important that such error conditions be a part of the
testing of the overall software system.

Software may take many different actions when faced with erroneous
input. Sometimes a program simply aborts with a run-time error (such as a
subscript out of range) or halts with no output. Obviously, these are unaccept-
able actions—they leave the user of the program with little or no help in find-
ing the cause of the problem. An even worse alternative is simply to ignore the
error and continue normally. This may deceive the user into thinking that
everything is correct, which may lead to confusion when the output of the sys-
tem is not as expected.

The preferred response to an error condition is to issue an error meseage
and continue processing. The program should not terminate when an error is
found, except in very unusual situations (such as running out of internal stor-
age) when it is impossible to continue. Instead, it should process the rést of the
input as completely as possible in order to detect and flag any other errors that
exist. Sometimes this may involve discarding a small amount of erroneous

Error Violates
number specification Statement
1 1 ALPHA LDA BETA
2 1 ALPHATLDA BETA
3 1 LDA BETA®
4 2 ALPHAXX LDA BETA
5 2 1LPHA LDA BETA:
6 2 ALP*A LDA BETA
7 3 ALPHA XXX BETA
8 4 ALPHA LDA 7FD3
9 4 ALPHA LDA 010000
10 5 BETA BYTE XA3B2
11 5 BETA BYTE X'01G9’
12 5 BETA BYTE X'A3B’

Figure 8.4 Sample input errors derived from specifications.
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input (for example, skipping to the beginning of the next statement to be
assembled), or taking a default action (for example, substituting 00 for an
invalid operation code or address).

Effective handling of error conditions is one mark of a well-written piece
of software. A program should not “crash” when presented with any input (no
matter how erroneous). The philosophy “Garbage In—Garbage Out” has no
place in software development. A more appropriate maxim would be
“Garbage In—Meaningful Error Messages Out.”

8.3 PROCEDURAL SYSTEM DESIGN

This section discusses one possible method for designing a system as a collec-
tion of procedures or modules. Section 8.3.1 introduces data flow diagrams
and illustrates the development of a data flow diagram for a simple assembler.
Section 8.3.2 discusses the general principles and goals of modular design—
that is, what the system designer attempts to accomplish. Section 8.3.3
describes ways in which the data flow diagram can be partitioned into mod-
ules. The diagram for a simple assembler that was developed in Section 8.3.1
is used to illustrate this partitioning. Section 8.3.4 considers how the modules
interact with each other and with the data objects being processed, and how
these interfaces should be documented.

8.3.1 Data Flow Diagrams

A data flow diagram is a representation of the movement of information
between storage and processing steps within a software system. The diagram
shows the major data objects of the system, such as files, variables, and data
structures. It also displays the major processing actions that move, create, or
transform data, and the flow of data between objects and actions.

Figure 8.5(a) shows the basic notation used in a data flow diagram.
Processing actions are represented by rectangular boxes and data objects by
circles. Arrows show the flow of information between objects and actions.
Thus, a procedure that simply copies one file to another could be represented
as shown in Fig. 8.5(b). In a more complicated situation, the diagram might
include the action or actions that produced File 1 and the action or actions that
use information from File 2.

Figure 8.5(c) shows an action that reads a source program and produces a
symbol table that contains the labels defined in the program and their associ-
ated addresses. The action may also set flags to indicate errors that were
detected in the source program. Notice that the symbol table is both an input
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object and an output object for this action. This reflects the fact that the action
must first search the table before adding a symbol, in order to detect duplicate
symbol definitions.

Data flow diagrams usually represent the most important actions and
objects in a system, with less-important details omitted. For example, the
action shown in Fig. 8.5(c) probably uses several other data objects, such as a
location counter and working-storage variables. Likewise, the action itself
could be divided into smaller actions, such as updating the location counter or
scanning the source statement for a label. However, the high-level representa-
tion shown in Fig. 8.5(c) conveys the overall approach being taken.

During the system design process, data flow diagrams may initially be
drawn at a relatively high level. The diagrams are then refined and made more
detailed as the design progresses. As an illustration of this, let us consider a

Object

(a)

5 @

Copy file
(b)
Source Build Symbol
program symbol table table

Error
flags

@f

()

Figure 8.5 Sample data flow diagrams.
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simple‘assembler for a SIC machine (standard version). You may want to refer
to Sections 1.3.1 and 2.1 as you read this material.

Figure 8.6 shows a very-high-level data flow diagram for an assembler.
There is only one action, “assemble program,” and the only data objects are
the source and object programs and the assembly listing. Obviously, this repre-
sentation is of little value in designing the assembler. However, it may serve as
a starting point for the process of developing and refining the data flow dia-
gram. -

One method for refining the diagram is to begin with the desired outputs
from the system. We then add to the diagram a relatively simple action that
produces each required output. (The definition of “relatively simple” obviously
depends on the level of detail we wish to represent in the diagram.) If the new
action does not operate directly on a primary input to the system, we must
define new “intermediate” data objects to provide the required input. We then
add new actions that produce these intermediate data objects, and we continue
in this way until the refined diagram is complete.

Figure 8.7 illustrates this process. In Fig. 8.7(a), we have created a new
action whose purpose is to format and write the object program. The object
program contains all of the assembled instructions and data items, together
with the addresses where they are to be loaded in memory. Thus, we define a
new data object that contains this information to serve as input for the new
action. At this stage, we are not concerned about how the new data object is
actually produced by the system; this question will be addressed at a later step
in the process.

Similarly, in Fig. 8.7(b) we have created an action to write the assembly list-
ing. This action requires as input some of the same information that was needed
for the object program. However, it also requires the source program (so that the
original assembler language statements can be listed) and information about
any errors that were detected during assembly. The source program is a primary

Object
program
Source Assemble
program program
Assembly
listing

Figure 8.6 High-level data flow diagram for assembler.
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input to the system, so it can be used directly by the new action. However, we
must introduce a new object that contains the required error flags.

The process continues in Fig. 8.7(c). At this stage, we consider how, to pro-
duce the intermediate data object that contains the assembled instructions
and data with addresses. Obviously, the new action that creates this object
must have the source program as one of its inputs. It also requires a table of
operation codes (to translate the mnemonic instructions into machine
opcodes) and a symbol table (to translate symbolic operands into machine
addresses). In addition, we define a new object that contains the address
assigned to each instruction and data item to be assembled. We prefer to sepa-
rate the assignment of addresses from the translation process itself in order to
simplify the translation action and also to make the addresses available to
other actions that may be defined.

Assembled .
2 instructions Write Object
: and data with object program program
addresses
(a)
Assembled
instructions i
? and data with Object.
addresses prog
Write i
object program
” Error
flags Write
assembly listing
Assembly
Source listing
program

®)

Figure 8.7 Refinement of data flow diagram for assembler.
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Figure 8.7 (contd)
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During the translation of instructions, certain error conditions may be
detected. Thus, the data object that contains error flags is also an output from
the new action in Fig. 8.7(c). (As we shall see, other actions may also set error
flags in this object.) The operation code table contains only constant informa-
tion that is related to the instruction set of the machine. This information may
be predefined as part of the assembler itself, instead of being produced during
each assembly of a source program. Thus, the operation code table may be
treated as though it were a primary input to the system—we will not need to
create any new action to produce this data object.

Figure 8.7(d) shows the final step in the development of the data flow dia-
gram for our simple assembler. We have created one new action to compute
the addresses for the instructions and data items for the program being assem-
bled. This action operates by scanning the source program and noting the
length of each instruction and data item, as described in Section 2.1. Another
new action uses these addresses to make entries in the symbol table for each
label in the source program. Both of the new actions may detect errors in the
source program, so they may need to write into the data object that is used to
store error flags. With these new actions defined, there are no “disconnected”
actions or objects. Thus, the data flow diagram in Fig. 8.7(d) is complete.

The data flow diagram is intended to represent the flow and transforma-
tion of information from the primary inputs through intermediate data objects
to the final outputs of the system. As the diagram is developed, it is important
to write down documentation for the data objects and processing actions that
are being defined. For example, the documentation should describe what data
is stored in each object and how each action transforms the data with which it
deals. However, the data structures being used to store the information and
the algorithras used to access this information are not a part of the data flow
representation. Likewise, the mechanisms by which data is passed from one
processing action to another are not specified by the representation. Such
implementation details are a part of the modular design process that we dis-
cuss in the following section. Thus, the data flow diagram and associated doc-
umentation can be considered as an intermediate step between the
specifications (which describe what is to be done) and the system design
(which describes how the tasks are to be accomplished). ’

8.3.2 General Principles of Modular Design

The data flow diagram for a system represents the flow and transformation of
information from the primary inputs through intermediate data objects to the
final outputs of the system. However, there are many different ways in which
these flows and transformations could be implemented in a piece of software.
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For example, consider the action in Fig. 8.7(d) that assigns instruction and data
addresses. This action might be implemented as a separate pass over the
source program, computing all addresses before any other processing is done.
In that case, the object that contains the addresses might be a data structure
with one entry for each line of the source program. This structure would then
be used by the other actions of the assembler.

On the other hand, the action that assigns addresses might deal with the
source program one line at a time. It might compute the address for each
instruction or data item and then pass this address to the other parts of the
assembler that require it. In that case, the data object created might be a simple
variable, containing only the address for the line currently being processed.

Similar options exist for many of the other actions and data objects in
Fig. 8.7(d). Thus, this data flow diagram could describe an ordinary two-pass
assembler. However, it could equally well describe a one-pass assembler or a
multi-pass assembler (see Section 2.4). The choices between such alternatives
are made by the system designer as the data flow diagram is converted into a
modular design for a piece of software.

Obviously, the goal of the modular design process is a software design that
meets the system specifications. However, it is almost equally important to
design systems that are easy to implement, understand, and maintain. Thus,
for example, the modules should be small enough that each could be imple-
mented by one person within a relatively short time period. Modules should
have high cohesion—that is, the functions and objects within a module should
be closely related to each other. At the same time, the modules in the system
should have low coupling—that is, each module should be as independent as
possible of the others. Systems organized into modules according to these
“divide and conquer” principles tend to be much easier to understand. They
are also easier to implement, because a programmer needs to understand and
remember fewer details in order to code each module. The resulting system
is easier to maintain and modify, because the changes that need to be made
are usually isolated within one or two modules, not distributed throughout
the entire system. In the remainder of this section, we will see examples of the
application of these general principles to the design of an assembler.

8.3.3 Partitioning the Data Flow Diagram

The modular design process may be thought of as a partitioning of the data
flow diagram into modules. As the modules are defined, the interfaces between
modules and the data structures to be used for objects are also specified. One
common approach to this partitioning, called top-down design, begins by divid-
ing the data flow diagram into a relatively small set of major processing units.
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Each such unit may then be divided into subunits, and the process continues
until the design is complete. :

The division of the diagram (or a portion of the diagram) into units may be
based on a variety of factors. Two of the most common criteria are the
sequence in which functions are performed and the type of function being per-
formed. For example, Fig. 8.8 shows the data flow diagram for our simple
assembler partitioned into two passes. This division is based on the processing
sequence to be used—assigning addresses to labels in Pass 1 and then assem-
bling the source statements in Pass 2. (You may want to review the discussion
in Section 2.1 for further explanation of this division into passes.) At 4 later
stage in the design process, we might use divisions based on type of function.
For example, the task of assembling a single line from the source program
might be divided into one module that assembles machine mstructlons, one
module that assembles data constants, and so on.

Another important factor to consider in modular design is the desirability of
minimizing the coupling between modules. Consider, for example, the portion
of the data flow diagram that is shown in Fig. 8.9(a). Suppose that each of the
two actions shown is implemented as a separate module. These two madules
access the symbol table directly (to add new entries and to search the table).

Assembler
- — = — — — —
~
: Pass 2 ~ Object |
- - — - - - program
| Instruction
| and data
[ addresses | Assembled
| Opcode instructions
Pass1 table anddatawith
| l‘_ 1 ; addresses
| Assign | 1
| | gl instructionand | | Write |
| |/"| dataaddresses | | ; objectprogram | | |
l i Assemble ||
| | | instructions .
| | anddata Write ||
| [ Error | i assemblylisting | *
l flags J |
|| | Loy
| | - -
_ -
| Assign —
| symbol -
| | addresses
L As;qmbly
| listing
L —

Figure 8.8 Division of assembler data flow diagram into passes.
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Figure 8.9 Isolation of symbol table design.

Thus, both modules must know the internal structure of the symbol table. For
example, if the symbol table is a hash table, then both modules must know the
size of the table, the hashing function, and the methods used for resolving colli-
sions. This creates more work for the programmers who implement the mod-
ules. It also leads to duplication of effort, because the same code is written
twice, and it creates additional possibilities for errors in the implementation.
Similar problems may occur during the maintenance phase. If the orga-
nization of the table or the methods for accessing it are changed, then both of
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the processing modules must be modified. As before, this requires more work
and may lead to errors if one module is updated and the other is not.

The difficulties just described are a consequence of the undesirable cou-
pling between the two modules—closely related items of information and pro-
cessing logic occur in both modules. The modules also exhibit relatively poor
cohesion—each module must contain information and logic that is related to
the design of the symbol table, instead of focusing only on the logical require-
ments of the specific processing task being performed.

A better design, with increased cohesion and reduced coupling, is shown in
Fig. 8.9(b). We have defined a new module whose sole purpose is to access the
symbol table. This module is called by the other two whenever they need to
perform any operation on the table. Thus, the two original modules need only
know the calling interface (parameters, etc.) used to invoke the “access” mod-
ule. The internal structure of the symbol table—size, organization, algorithms
for access, etc.—are of concern only within the new module that performs the
actual access. This reduces the amount of knowledge that must be included in
the two main processing modules. It also simplifies the maintenance of the sys-
tem in case the internal details of the table structure need to be changed.

In the process just illustrated, the effect of a design decision (i.e., the inter-
nal structure and representation of the symbol table) was “isolated” within a
single module. This design principle is sometimes referred to as isolation of
design factors, or simply factor isolation. The same general concept is also often
called information hiding (because a module “hides” some design decision), or
data abstraction (because the rest of the system deals with the data as an
“abstract” entity, separated from its actual representation). Further discussions
of these topics can be found in Ng and Yeh (1990) and Lamb (1988).

Figure 8.10 shows a modularization of the data flow diagram from Fig. 8.8
according to the principles just described. This design includes the new mod-
ule introduced in Fig. 8.9 (Access_symtab); there are also several other similar
changes. The source statements, instruction and data addresses, and error
flags that are communicated from Pass 1 to Pass 2 are included in an interme-
diate file. (A discussion of the reasons for this design decision may be found in
Section 2.1.) A new module (Access_int_file) has been defined to handle all of
the reading and writing of this intermediate file. The reasons for including this
module are essentially the same as those discussed above—all of the details
concerning the structure and access techniques for the intermediate file are
isolated within a single module and removed from the rest of the system.

Likewise, we have defined a module (P2_search_optab) whose sole purpose
is to access the operation code table. This design decision is somewhat different
from the two just discussed, because it does not materially reduce the coupling
between modules. (Whether or not the new module is defined, there is still only
one place in the system where the structure of the table must be known.)
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However, the decision does make the module that assembles instructions
smaller and less complex. It also improves module cohesion by separating two
logically unrelated functions that were previously part of the same module.
Thus, it leads to a modular structure that is easier to implement, understand,
and modify. For similar reasons, we have introduced a module (P1_read_source)
that reads the source program and passes the source statements to the rest of the
assembler. This module could, for example, handle details such as scanning for
the various subfields in a free-format source program.

Figure 8.10 represents one possible stage in the modular design of our assem-
bler. Depending upon the detailed specifications for the assembler, however,
some of these modules may still be larger and more complex than is desirable. In
that case, the decomposition could be carried further. For example, module
P2_assemble_inst could be divided into several submodules according to the
type of statement being processed—one to assemble Format 3 instructions, one to
process BYTE assembler directives, etc. There may also be a number of “com-
mon” or “utility” functions that are used by more than one module in the system.
These functions might include, for example, conversion of numeric values
between internal (integer) and external (hexadecimal character string) represen-
tations. Each such function could be isolated within its own module and called
by the other modules as needed. This isolation would improve module cohesion
and reduce module coupling, resulting in the benefits previously described.

8.3.4 Module Interfaces

Figure 8.10 describes the decomposition of a problem into a set of modules.
However, it does not specify the sequence in which these modules are to be
executed or the interfaces between the modules. These are questions that must
be addressed by the system designer before the implementation can begin.

There are often many ways in which a given set of modules can be orga-
nized into a system. For example, consider the three modules that make up
Pass 1 in Fig. 8.10. In one possible organization, module P1_read_source would
be called by the main procedure for Pass 1. For each call, P1_read_source
would read a line from the source program. It would then call P1_assign_loc
(for noncomment lines) to assign an address to the current statement. For state-
ments containing a label, P1_read_source would call P1_assign_sym to make
the required entry in the symbol table. A similar organization would have
P1_read_source call P1_assign_loc for every noncomment line read. After cal-
culating the appropriate address, P1_assign_loc would then call P1_assign_sym
itself (instead of returning immediately to P1_read_source).

In the organization just described, the processing of Pass 1 is “driven” by
P1_read_source. On the other hand, the processing could also be controlled by
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Pl_assign_loc. This module could call P1_read_source whenever it needs
another line from the source program. It could assign an address to the line
returned by P1_read_source and then call P1_assign_sym. Similarly, the pro-
cessing could be driven by P1_assign_sym.

Yet another possibility is for the main procedure of Pass_1 to call all three
of the other modules directly. Thus, Pass_1 could call P1_read_source to read
each line from the source program. Pass_1 would then call P1_assign_loc and
P1_assign_sym in turn, passing as a parameter the source line just read.
Because of its simplicity, we have chosen this form of organization for the
remainder of our discussions. We have also chosen to follow a similar organi-
zation in Pass 2. Figure 8.11(a) summarizes this calling structure for the mod-
ules of our assembler. In this diagram, an arrow from one module to another
indicates that the first module may call the second.

A closely related issue is the placement of data objects within the modular
structure. If an object is used by only one module, it is natural to place that
object within the module that uses it. This is especially true in the case of mod-
ules whose purpose is to hide the internal structure of the object. For example,
the symbol table in our assembler design should probably be declared within
module Access_symtab. If an object is required by more than one module, the
data can be shared either via parameter passing or through the use of global
variables. In the first approach, the data object itself is located within one
module, which passes the information in the form of parameters to other mod-
ules as needed. For example, the data object that contains the source statement
currently being processed could be declared in the module Pass_1 and passed
as a parameter to P1_read_source, P1_assign_loc, and P1_assign_sym. In the
second approach, the data object is made global or common to the modules
that require it. For example, suppose that the modules P1_read_source,
P1_assign_loc, and P1_assign_sym are contained within the module Pass_1. If
the data object containing the source statement were also declared within
Pass_1, it could be directly accessible to the other three modules, without the
need for parameter passing. .

Although these two approaches to data placement—parameter passing and
global variables—can be viewed as equivalent in their effect, the choice of one
over the other may be influenced by a variety of factors. Some of these factors
are related to the programming language being used—for example, the amount
of overhead involved in parameter passing and the mechanisms for allocating
and using local and global variables. Other factors are related to the structure of
the software system itself. The use of parameters provides a clearly defined and
limited interface between modules. However, it may be inconvenient if the need
for data transmission does not closely match the calling structure of the system.
For example, a particular item of information might have to be passed through a
chain of calls before reaching the module that requires it. On the other hand, the
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Figure 8.11(b) Parameters and calling sequence for modules of assembler.
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use of global variables provides a simple and efficient means of sharing data.
However, it can increase the coupling between modules, because any module in
the entire system could potentially use or modify any global data object.

In general, it seems desirable to avoid the use of global variables unless
there is a clear reason for preferring to use them in a specific situation. If
global variables are used, it is important to document clearly the use of these
variables in all of the modules affected. Further discussions of module inter-
faces and the implications of data placement may be found in Gilbert (1983).

Figure 8.11(b) shows a high-level description of the calling sequence and
parameters for our modular assembler design. In this description, we have
assumed that all data values are passed between modules in the form of para-
meters. This type of documentation is an extremely important part of the
- design process, because it forms the basis for the implementation phase to fol-
low. An actual system design, of course, would include much more detailed
information than is present in this example. The parameters for each module
would be described completely, with data types specified and detailed
descriptions of the contents and use of each parameter. The processing to be
performed by each module would also be described carefully and precisely.
You may want to write down some of these details for yourself, in order to
gain further insight into the process of specifying a software design.

8.4 OBJECT-ORIENTED SYSTEM DESIGN

This section introduces a modern alternative to the procedural system design
methods discussed in Section 8.3. Object-oriented design focuses on the abjects
handled by the system, rather than on algorithms. Programs are designed and
implemented as collections of objects, not as collections of procedures.

The object-oriented paradigm has become increasing popular in recent
years. Some people had hoped that this approach would be the “silver bullet”
to cure all of the problems of software engineering (Brooks, 1995). Although it
still appears that there is no universal “best” design method, the object-
oriented strategy has been found to have a number of potential advantages.

Section 8.4.1 introduces the fundamental principles and concepts of object-
oriented programming. Section 8.4.2 illustrates the use of object-oriented
methods as applied to the design of an assembler.

8.4.1 Principles of Object-Oriented Programming
In the object-oriented programming (OOP) methodology, programs are structured

as collections of objects, not as collections of procedures. An object contains
some data and defines a set of operations on that data that can be invoked by
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other parts of the program. Objects may represent physical things that exist in
the real world, or they may represent software entities such as data structures,
user-interface menus, and memory managers.

The data contained by an object consists of the values of its instance vari-
ables. These instance variables are normally inaccessible from outside the
object. Other parts of the program can view or manipulate the data stored in
the object only by invoking one of the operations defined by the object. These
operations are usually referred to as metheds; depending on the programming
language, they may also be called operations or member functions. Invoking a
method on an object is usually accomplished by sending a message to the
object. Depending on the particular method being invoked, a reply message
may also be returned to the invoker.

Consider, for example, an object that represents the symbol table used by
an assembler. The methods defined by this object might include operations
such as Insert_symbol and Lookup_symbol. The instance variables of the
object would be the contents of the hash table (or other data structure) used to
store the symbols and their addresses. The representation of the instance vari-
ables—for example, the way the hash table is organized—would be invisible
to the rest of the assembler.

Compare this approach with the isolation of design factors that we dis-
cussed in Section 8.3.3. In effect, the object that represents the symbol table
combines the “symbol table” data structure and the “access symbol table”
module that are shown in Fig. 8.9(b). The object-oriented representation pro-
vides the same advantages of data abstraction and information hiding that we
+ discussed in Section 8.3.3. For example, any changes in the internal organiza-
tion of data in the object do not affect the rest of the assembler. The OOP term
for this kind of abstraction is encapsulation.

However, there is much more to OOP than encapsulation. In the object-
oriented paradigm, each object is created as an instance of some class. A class
can be thought of as a template that defines the instance variables and meth-
ods of an object. It is possible to create many objects from the same class. For
example, suppose that an assembler is designed to translate programs for dif-
ferent versions of the target machine (such as SIC and SIC/XE). The assembler
might make use of a class named Opcode_table. A separate instance of this
class (i.¢., a separate object) could be created to define the instruction set for
each version of the target machine.

Classes can be related to each other in a variety of ways. Consider, for
example, Fig. 8.12(a). An object of the class Source_program could be used to
represent an assembler language program. This object might contain a variety
of information about the program itself—for example, the total program size
and an indication of whether or not errors have been detected. It could also
include a collection of objects of the class Source_line. Each of these objects
would represent a single line of the program.
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Symbol_table Opcode_table
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Figure 8.12 Examples of relationships between classes.
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In this example, the relationship between the class Source_program and the
class Spurce_line is one of inclusion or aggregation. In OOP terms, this is called
a “has-a” relationship. The diagram indicates that there is a 1:N relationship
between one instance of Source_program and many instances of Source_line.

It is also possible for one class to be a subclass of another. For example,
Fig. 8.12(b) shows a class Symbol_table and a class Opcode_table. These are
both subclasses of the base class Hash_table. In OOP terms, this is called an “is-a”
relationship.

Subclassing is very important in the object-oriented paradigm. When a
subclass is created, it automatically inherits all of the instance variables and
methods of the base class. For example, suppose the class Hash_table defines
methods called Insert_item and Search_for_item. When the classes
Symbol_table and Opcode_table are declared, they automatically contain defi-
nitions of these same methods. Likewise, they automatically incorporate what-
ever mechanism is used in the class Hash_table for organizing and accessing
the data (instance variables).

The instance variables and methods inherited by a subclass can be overrid-
den to add new or specialized behavior to the subclass. For example, the
instance variables of the class Symbol_table could be changed to include sym-
bol addresses, error flags, and other needed information. Likewise, the instance
variables of Opcode_table could be changed to include information about
instruction formats. The method Insert_item could be deleted from the subclass
Opcode_table to prevent accidental changes to the contents of this table.

Subclassing and inheritance allow the programmer to reuse existing code
that has already been developed and tested for a more generic case. The sym-
bol and opcode tables can be implemented without needing to recode the
mechanics of managing the hash table (hashing function, collision resolution
method, etc.) The only things that need to be written are the parts that are spe-
cific to each subclass. This reuse of existing code can result in significant sav-
ings of time and effort in design, implementation, and testing.

Flgure 8.12(c) illustrates another way of using subclasses. In this example,
there is a superclass named Searchable_data_structure, which defines the meth-
ods Insert_ltem and Search_for_item. The classes Hash_table and
Binary_search_tree are subclasses of Searchable_data_structure. Thus they
inherit these two methods. The implementations of the methods are different
in the classes Hash_table and Binary_search_tree, because different underlying
data representations are used. However, the names of the methods and the
way they are invoked are the same for both subclasses.

Figure 8.12(c) indicates that Symbol_table is a subclass of Hash_table and
Opcode_table is a subclass of Binary_search_tree. If the method Search_for_item
is invoked on an instance of Symbol_table, it will result in a retrieval from a hash
table. If the same method is invoked on an instance of Opcode_table, it will result
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in a search of a binary tree. This is an example of polymorphisni—the same mes-
sage (method invocation) sent to different objects can result in different behavior.

Polymorphism is one of the most powerful features of the object-oriented
programming methodology. Suppose, for example, we decide to ¢hange
Symbol_table from a hash table to a binary search tree (or to some other sub-
class of Searchable_data_structure). Because of the polymorphism, this bhange
will have absolutely no effect on the rest of the assembler.

Encapsulation, inheritance, and polymorphism are the key characteristics
of the object-oriented paradigm. To be considered truly object- orwnted apro-
gramming language must support at least these three features. '

8.4.2 Object-Oriented Design of an Assembler

In this section, we illustrate the use of object-oriented methods as applied to
the design of an assembler. Object-oriented design can be viewed in different
ways. Booch (1994) suggests that there are really two different develépment
processes, which he calls micro and macro.

Booch’s macro process represents the overall activities of the development
team on a long-range scale (perhaps many months at a time). It mcludes the
following activities:

Establish the requirements for the software (conceptualization).
Develop an overall model of the system’s behavior (analysis).
Create an architecture for the implementation (design).

Develop the implementation through successive refinements (evoluﬁon).

A N A

Manage the continued evolution of a delivered system (maintenance).

This macro process repeats itself after each major release of a software prod-
uct. The overall sequence of events is similar to the waterfall model depicted
in Fig. 8.1. However, Booch argues that object-oriented development is inher-
ently iterative, so that reverse flows of information like those discussed in
Section 8.1.2 are inevitable.

Booch’s micro process essentially represents the daily activities of the sys-
tem developers. It consists of the following activities:

1

1. Identify the classes and objects of the system. g

2. Establish the behavior and other attributes of the classes :and
objects—for example, the methods that are applicable to each.

3. Analyze the relationships among the classes and objects—for example,
the use of aggregation, inheritance and polymorphism.
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4. Specify the implementation of the classes and objects—for example,
the data structures and algorithms that are used in each.

These activities may be repeated as needed, with increasing levels of detail
being considered.

We will focus on this micro process at a relatively high level, similar to the
discussions of procedural design in the previous section. It is natural to begin
by identifying software objects that correspond to real-world objects—in this
case, the source program, the object program, and the assembly listing.

During assembly, we will need to perform several different operations on
individual lines of the source program. Therefore, we choose to make each
source line a separate object. The source program contains the objects that rep-
resent the individual source lines, as shown in Fig. 8.12(a). On the other hand,
the lines in the assembly listing are not manipulated separately, except for
being inserted into the listing itself. Thus we choose to represent these lines as
instance variables within the listing object, not as separate objects themselves.
A similar reasoning applies to the individual parts of the object program.
Of course, all of these choices are design decisions, which could be made in
different ways.

Our knowledge of the way an assembler operates also leads us to identify
two other objects—a symbol table and an opcode table. These objects will be
used as described in Section 2.1. We assume that the symbol table and the
opcode table will be derived from a superclass of searchable data structures, as
shown in Fig. 8.12(c).

Figure 8.13 lists the objects we have identified so far. It also briefly indi-
cates what each object contains and what methods can be invoked on the
object. Clearly, these specifications must be made more precise before any
implementation is attempted. However, they are sufficient to guide us at this
level of the design process.

Now we are ready to look at how the objects of the assembler interact with
each other. This can be done in several different ways. Figure 8.14 shows an
object diagram which indicates the methods that are invoked by each object.
Thus, for example, the object Source_program invokes the methods Create,
Assign_location, and Translate on the Source_line objects. The object
Source_line invokes the methods Search and Enter on the object Symbol_table,
as well as methods on several other objects.

It is possible to include several other kinds of information in an object dia-
gram. For example, the diagram may also indicate the class of each object. The
invocations may be numbered to indicate the sequence in which they occur, and
the flows of information they cause. Different types of annotations can be used
to describe the synchronization among the objects and the degree of “visibility”
between objects. Discussions of such issues can be found in Booch (1994).
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Source_program

Contents

The program to be translated. Includes the current location
counter value and a summaty of errors detected in the program.
Also includes one object of class Source_line for each line of the

program.
Methods
Assemble — Translate the source program, produc-
ing an object program and an assem-
bly listing.

Source_line

Contents

A line of the source program. Includes the location counter value
and indications of errors detected for the line.

Methods
Create — Create and initialize a new instance of
‘ Source_line. i

Assign_location —  Assign a location counter value to the
line; return an updated location
counter value to the invoker. Enter
the label on the line (if any) into the
symbol table.

Translate — Translate the instruction or data defi-
nition on the line into machine lan-
guage. Make entries in the pbject
program and assembly listing. ,

Record_error — Record an error detected for the line.

Symibol_table
'QQ_ ntents

Labels defined in the source program, with the location counter
value assigned to each.

Fiigure 8.13 Preliminary specification of objects for assembiler.



Software Engineering Issues

Methods

Enter — Enter a label and location counter
value into the table. Return an error
indication if the label is already
defined.

Search —  Search the table for a specified label.
Return the location counter value
associated with the label, or an error
indication if the label is not defined.

Opcode_table
Contents

Mnemonic instructions to be recognized by the assembler.

' Includes the machine instruction format and opcode to be used in
assembling each instruction, and a description of requirements for
operands.

thod:

Search — Search the table for a specified
mnemonic instruction. Return infor-
mation about the instruction format
and operands required, or an error
indication if the mnemonic instruc-
tion is not defined.

Object_program
ntent:

The object program resulting from the assembly. Includes the
machine language translation of instructions and data definitions
from the object program. Also includes an indication of program

length.
Methods

Enter_text —  Enter the machine language transla-
tion of an instruction or data defini-
tion into the object program.

Complete —  Enter the program length and com-
plete the generation of the external
object program file.

Figure 8.13 (cont'd)
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Assembly_listing

Contents

A listing of the lines of the source program and the corresponding
machine language translation for each line. Also includes a
description of errors detected for each line, and a summary of
errors detected in the program.

Methods
Enter_line — Enter a source line, the corresponding
machine language translation, and a
description of errors detected for the
line into the assembly listing. |
Complete — Enter a summary of errors detected

and complete the generation of the
external assembly listing file.

Figure 8.13 (cont’d)

Complete

Source_program

Complete
Create | Assign_ Translate Assembly_listing
Location
\ 4 \ 4 v Enter_line
Record_ Source_line
Error Enter_text

Obiject_program

Enter Search

A4 v

(  Symbol_table ) Opcode_table

Figure 8.14 Object diagram for assembler.




Software Engineering Issues

In some situations, it is useful to represent the system in a different way.
Figure 8.15 shows an interaction diagram for our preliminary assembler design.
Interaction diagrams make it easier to visualize the sequence of object invoca-
tions, and the flow of control between objects. Annotations can be used to
indicate iteration and conditions that affect the interactions between objects.

In an interaction diagram, each object is represented by a dashed vertical
line. The invocation of a method is shown by a horizontal line between one
object and another. The sequence of operations is indicated by their vertical
position in the diagram. A script is often written at the left-hand side of the
diagram to describe conditions and iteration. A narrow vertical box can be
used to indicate the time that the flow of control is focused in each object.

Consider, for example, the interactions shown in Fig. 8.15. The primary
focus of control is in the object Source_program. The Assemble method of
Source_program begins by creating a new instance of Source_line for each line
in the input file for the assembler. The method Assign_location is then invoked
for each Source_line object. During its period of control, Source_line may
invoke Enter to make an entry in the symbol table. If errors are detected, it
may invoke the method Record_error on itself.

After the iteration of Assign_location is complete, a second iteration is

used to translate each source line. During this process, Source_line may-invoke
methods on several other objects, depending on the conditions encountered.
You are encouraged to trace through the flow of invocations described in

Source_ Source_ Symbol_ Opcode_ Object_ Assembly_
program line table table program listing
for each line of input file [ Create
’ Assign_
for each Source_line |[10c3ton_; Enter
if label exists —P
; Record_:
it ermrs found LZ] error
" Translate : :
for ea¢h Source_line »{ Search | :
if aperand exists
if instruction Search : :U
. Record_: :
if ervors found efror :
if text generated Enter_text : ~ ti
Enter_line f d
0
Complete : : o
H H H At :
Complete : : : U o
: : : gl

Figure 8.15 Interaction diagram for assembler.

457



458

System Software

Fig. 8.15. You may also want to compare this diagram with the algorithmic
representations in Fig. 2.4. »
Notice that all of the system descriptions we have discussed focus on the
behavior of objects, not on how the objects are represented. Object-oriented
design delays decisions about representation of objects until as late as possi-
ble. This helps avoid premature implementation decisions that might bias the
design process. ‘
When implementation details are considered, the first step is to examine
existing class libraries. It may be that an existing class already implements
some of the behavior that is needed in a particular object. In this case, the
designer can make use of a derived class (i.e., a subclass of the existing class).
The behavior of the existing base class will automatically be inherited by the
new derived class. Only the parts of the behavior that are unique to the ‘new
system will need to be implemented from scratch. :
Finally, each object is implemented using ari appropriate object-oriented
language. Representations for the instance variables are chosen, and algo-
rithms for each method are selected. The details of implementation depend to
some extent on the language being used, and are beyond the scope of this
chapter. Discussions of implementation issues, and more information -about
object-oriented programming and design, can be found in Booch (1994).

8.5 SYSTEM TESTING STRATEGIES

This section provides an introduction to system testing techniques. Many books
and papers have been written on software testing methodologies; a detailed
discussion of such topics is beyond the scope of this chapter. Instead, we con-
sider general strategies that can be used in testing a set of related modules that
make up a software system. These modules may be classes or objects that are
defined by an object-oriented design process, or they may be procedures that
are defined by a procedural design process. We focus on alternatives for the
sequence in which the modules of a system are coded and tested. Further infor-
mation about software testing in general can be found in Sommerville (1996).
Section 8.5.1 introduces some terminology and briefly mentions the vari-
ous levels of system testing. Sections 8.5.2 and 8.5.3 discuss two commonly
used sequences for testing a collection of modules. ;

8.5.1 Levels of Testing

A large software system, composed of many thousands of lines of source code,
is almost always too complex to be debugged effectively all at once—when
errors occur, there are too many places to look for them. Most such systems
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are tested in a series of stages. At each stage, the amount of code actually
being debugged is kept relatively small, so that it can be tested thoroughly
and efficiently.

In‘the unit test phase, individual modules are tested in isolation from the
rest of the system. During this process, it is usually necessary to simulate the
interaction of the module being tested with the other parts of the system.
Methods for doing this are discussed in the following sections.

The unit test of an individual module is usually governed by the module
specifications. That is, test cases are generated from the specifications for the
module, without considering the code itself. (Obviously, the code must be con-
sidered in finding and correcting errors.) This is known as black box testing.
Usually, a module is small enough to allow some additional testing based on
logic paths in the code. Test cases might be designed that force the module
through certain statements or sequences of statements. For example, the tester
could make sure that both the then and the else clause of an if statement are
executed. This is called white box testing.

Unit tests are often conducted by the programmer who writes each mod-
ule. However, there are many advantages to having other people involved in
the unit testing. From the programmer’s point of view, a test is successful if it
shows that the program works correctly. However, the purpose of testing is to
reveal bugs in the software under test—thus, a test should be considered suc-
cessful if it discloses a flaw. The programmer who writes a piece of code may
be too close to it, and too psychologically invested in its success, to design rig-
orous tests.

After modules are tested individually, they must be tested in combination
with each other to be sure that the interfaces are correct. This is known as inte-
gration testing. Except in relatively simple systems, the integration testing is
usually done using an incremental approach. The system is built up by adding
one module (or a small number of closely related modules) at a time, and the
partial system is tested at each stage. Modules are usually added to the partial
system using either a bottom-up or top-down ordering; these strategies are
described in the following sections.

After all of the modules have been integrated into a complete system, the
final phase, system testing, can begin. The goal of this testing is to verify that
the entire system meets all of its specifications and requirements. System test-
ing often takes place in two or more stages. Alpha testing is performed by the
organization that developed the system, before it is released to any outside
users. Beta testing or field testing involves placing the system into actual use in
a limited number of environments. This sort of customer-performed testing
often turns up problems that were missed by the system developers. Finally,
customers may perform their own acceptance testing to decide whether or not
to accept delivery of the system.
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8.5.2 Bottom-Up Testing

The term bottom-up testing describes one common sequence in which the: mod-
ules of a system undergo unit testing and are integrated into a partial system.
In the case of a procedural system like the one shown in in Fig. 8.11(a), the term
bottom-up refers to the hierarchical calling structure. The modules at the lowest
level of the hierarchy (i.e., farthest from the root) are tested first, then the mod-
ules at the next higher level, and so on.

Thus, in the structure of Fig. 8.11(a), we might first perform unit testmg on
the modules Access_symtab and P2_search_optab. Then we might unit test
module P2_assemble_inst. After this unit testing, we could combine these
three modules into a partial system and perform integration testing on:them.
The other modules at level 3 of the hierarchy would also be unit tested indi-
vidually. Then they would be integrated together to form Pass_1 and Pass_2,
and these larger subsystems would be tested. Finally, the “driver” routine for
the assembler would be unit tested, and all of the modules would beg com-
bined for system testing.

In the case of an object-oriented system, the situation may not be as clear.
In general, bottom-up testing for such a system would begin with objects that
are passive—that is, objects that do not invoke methods on other objects. In
Fig. 8.14, for example, the objects Symbol_table, Opcode_table, Object_program,
and Assembly_listing might be tested individually first. The sequence would
then continue with other objects that invoke methods only on objects that have
already been tested. Thus, in Fig. 8.14 the next object to be tested would be
Source_line. Finally the object Source_program would be tested.

During the unit testing of individual modules and the integration testing
of partial systems, it is necessary to simulate the presence of the remainder of
the system. This can be done by writing a test driver program for each module.
Figure 8.16 shows the outline of a simple test driver for the procedure
Access_symtab from Fig. 8.11. This driver reads test cases (i.e., sets of ¢alling
parameters) that are supplied by the person performing the test and calls
Access_symtab with these parameters. It then displays the results returned by
the procedure, so that these can be compared with the correct input.

Essentially the same process would be used to test the behavior of an
object. Each test case would include a specification of a method to be invoked
on the object, and any parameters that are passed with the invocation; After
invoking the method, the test driver would display any values that were
returned from the invocation. The details of doing this depend on the syntax
of the particular object-oriented language being used.

Bottom-up testing is the most frequently used strategy for unit testmg and
module integration. Test cases are delivered directly to the module, instead of
being passed through the rest of the system. Thus, it is relatively easy to test a
large variety of different conditions. Bottom-up testing also allows for the
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program test_symtab (input, output);

var
begin
while not eof(irnput) do
kgegin
readln (request_code, symbol, ‘address) ;
’ { read test case from input }
" Acrens. swvrntablrequest_code, return _code, symbol, address);
{ call 2Access_symtab with test case }
writein/reguesc_ceode, returrn_code, symbol, address);
{ display result }
end;
end.

Figure 8.16 Test driver for Access_symtab module.

simultaneous unit testing and integration of many different low-level modules
in the system. This can be of real benefit in meeting project deadlines.
However, bottom-up testing has been criticized by a number of authors. The
most frequent objection is that, with bottom-up testing, design errors that involve
interfaces between modules are not discovered until the later stages of testing.
When such errors are discovered, fixing them can be very expensive and time-
consuming. In some complex systems, it can also be difficult to write drivers that
exactly simulate the environment of the unit or partial system being tested.

8.5.3 Top-Down Testing

In top-down testing of a procedural system, modules are unit tested and integrated

into partial systems beginning at the highest level of the hierarchical structure.
For example, in the structure shown in Fig. 8.11(a) the first module to be unit
tested would be the main routine for the assembler (the root node in the tree
structure). Next, the main routines for Pass_1 and Pass_2 would be tested indi-
vidually, and these three routines would be integrated together. The modules at
the next level would be individually tested and integrated into the partial system
being developed, and this process would continue until the system is complete.
In the case of an object-oriented system, top-down testing would begin
with the object that is the primary focus of control for the system. For example,
the interaction diagram in Fig. 8.15 indicates that the primary focus of control
is the object Source_program. Testing would then continue with other objects
whose methods are invoked by the primary object. In the case of Fig. 8.15, the
next object to be tested would probably be Source_line. Finally, the remaining
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objects in the system would be tested. Note that this is the reverse of the order
produced by bottom-up testing.

During the top-down testing of modules and partial systems, we must
simulate the presence of lower-level modules. This is done by writing stubs for
the modules to be simulated. A stub contains only enough code to allow com-
munication with the higher-level module being tested. For example, the stub
for a module that computes a data value might return a constant value or a
random value in some range, regardless of its input. A stub might also write a
message that indicates that the module has been executed and that shows the
parameters it was passed. In some cases, the stub need do nothing except exit
back to the calling procedure. Figure 8.17 shows sample stubs for some of the
modules in Fig. 8.11.

procedure Pl_assign_loc (..... );
var

begin
next_locctr := curr_locctr + 3;
end;

procedure P2_search _optab (..... );

var
begin
if mnemonic = ‘LDA’ then
begin
return_code := 0; {mnemonic found in opcode table}
opcode := ‘00'; {machine opcode = hex 00}
end '
else
begin
return_code := 1; {mnemonic not found in table}
opcode := ‘FF’; {set machine opcode to hex FF}
end;
end;
procedure P2_write_obj (..... )
var
begin
writeln(’*** P2_write_obj executed ***');
end;

Figure 8.17 Sample stubs for modules of assembler.
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The same process can be used to simulate the behavior of an object that has
not yet been implemented. The object being simulated would contain a stub
like those in Fig. 8.17 for each method it defines. The simulated object would
include only enough code to allow communication with the object that
invokes its methods. The details of doing this depend on the syntax of the par-
ticular object-oriented language being used. ,

Top-down testing detects design errors that involve module interfaces at an
earlier stage than bottom-up testing. Thus, such errors can be fixed with less
wasted time and effort. However, the testing process is more difficult to plan and
execute. In some systems, it is very hard to devise input data that, when passed
through the system structure, will adequately test all situations in a low-level
module. In addition, top-down testing is very sensitive to delays in the planned
schedule of tests. If one high-level module takes longer than anticipated to
debug, the testing of many lower-level modules is also delayed.

In many cases, a combination of the bottom-up and top-down approaches
is used in practice. For example, some of the most critical low-level modules
could be tested first, and then the rest of the system could be integrated from
the top down. Another approach uses both stubs and test drivers for the unit
testing process; the resulting modules can be integrated together in any conve-
nient sequence. Further discussions of bottom-up and top-down testing strate-
gies can be found in Sommerville (1996).

EXERCISES
Section 8.2

1. Write a complete set of input specifications for a SIC (standard version)
assembler, as described in Section 2.1. You may make any decisions
. about requirements that you feel are appropriate.

2. Write a complete set of specifications for an absolute loader, as
described in Section 3.1.

3. List implementation restrictions that would be appropriate for a
SIC/XE assembler that incorporates all of the features described in
Sections 2.2 and 2.3.

4. What quality specifications might be appropriate for an operating
system for a personal computer?

5.  Write a decision table that specifies how bits n and i should be set in
. a SIC/XE Format 3 instruction (see Section 2.2).

6. Write a decision table specification for determining whether an
expression specifies an absolute or relative value (see Section 2.3.3).
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7.

List input error conditions derived from the specifications that you
wrote in Exercises 1 and 2.

Section 8.3

10.
11.
12.

13.

14.

15.

16.

1. Draw a data flow diagram for an absolute loader (see Section 3.1). i
2. Draw a data flow diagram for a linking loader (see Section 3.2). |
3.
4

Draw a data flow diagram for a linkage editor (see Section 3.4.1).

. Draw a data flow diagram for a one-pass macro processor (see

Section 4.1).

Draw a data flow diagram for a one-pass assembler that generates
the object program in memory (see Section 2.4.1). :

Modify the data flow diagram in Fig. 8.7(d) for a SIC/XE assemb!er
that supports literals (see Sections 2.2 and 2.3.1). ;

Modify the data flow diagram in Fig. 8.7(d) for a SIC/XE assembler
that supports program blocks (see Sections 2.2 and 2.3.4).

Write descriptions, at a suitable level of detail, for the data objects
and processing actions in Fig. 8.7(d). '

What information is “hidden” by module P1_read_source in Fig. 8.10?
Draw a data flow diagram for a Modularized Macroprocessor design.
Draw a data flow diagram for a Modularized Linking loader desiérx.

Extend the Fig. 8.10 for program block and control section of
assemblers.

Divide module P2_assemble_inst in Fig. 8.10 into a set of smaller
modules, and specify the interfaces between these new modules.

Complete the interface description for P1_read_source that is given
in Fig. 8.11 by specifying the representation, contents, and use of all
of the parameters involved.

Complete the interface description for Access_symtab that is given in
Fig. 8.11 by specifying the representation, contents, and use of all of
the parameters involved.

Suppose that the execution of Pass_1 is “driven” by P1_read_source
as described in the text. Specify the calling structure and parameters
for this new organization, at the same level of detail as shown in
Figs. 8.10 and 8.11.



17.
18.
19.

20.
21.
22.

Software Engineering Issues

Write a complete set of specifications for module P1_assign_sym.
Write a complete set of specifications for module Access_symtab.

Which of the parameters in Fig. 8.11 would you consider making
global or common to two or more modules? Justify your choice. -

Design a set of modules for a linking loader (see Section 3.2).
Design a set of modules for a one-pass mactro processor (see Section 4.1).

Design a set of modules for a one-pass assembler that generates the
object program in memory (see Section 2.4.1).

Section 8.4

10.

. Draw an object diagram and an interaction diagram for an absolute

loader (see Section 3.1).

Draw an object diagram and an interaction diagram for a linking

" loader (see Section 3.2).

Draw an object diagram and an interaction diagram for a linkage
editor (see Section 3.4.1).

. Draw an object diagram and an interaction diagram for a one-pass

macro processor (see Section 4.1).

Draw an object diagram and an interaction diagram for a one-pass
assembler that generates the object program in memory
(see Section 2.4.1).

Modify the object diagram in Fig. 8.14 for a SIC/XE assembler that
supports literals (see Sections 2.2 and 2.3.1).

Modify the object diagram in Fig. 8.14 for a SIC/XE assembler that
supports program blocks (see Sections 2.2 and 2.3.4).

List as many objects as you can that would be appropriate to con-
sider in the design of a compiler. Briefly describe the contents of each
object, and indicate what methods it would define.

List as many objects as you can that would be appropriate to consider
in the design of an operating system. Briefly describe the contents of
each object, and indicate what methods it would define.

Select a data structure for representing the instance variables of the
object Source_line.
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11.

12.

13.

14.

15.

16.

17.

18.

Select a data structure for representing the instance variables of the
object Assembly_listing.

Write algorithms for implementing the methods of the object
Source_line.

Write algorithms for implementing the methods of the object
Assembly_listing.

How would the implementations of the Search method be different
in the classes Hash_table and Binary_search_tree?

How would the implementations of the Enter method be different in
the classes Hash_table and Binary_search_tree?

What methods might be implemented in the class Hash_table that
would not be found in the class Binary_search_tree?

What methods might be implemented in the class Binary_search_tree
that would not be found in the class Hash_table?

What other kinds of data structures might be defined as subclasses of
the base class Searchable_data_structures [see Fig. 8.12(c)]. How
would the implementations of these classes differ from each other?
What methods (if any) would be unique to each derived class?

Section 8.5

. Outline a test driver for module P1_read_source (see Figs. 8.10 and

8.11).

Devise a set of test cases to be used in the unit testing of
P1_read_source with the test driver you outlined in Exercise 1.

Outline a test driver for module P2_write_obj (see Figs. 8.10 and
8.11).

Devise a set of test cases to be used in the unit testing of
P2_write_obj with the test driver you outlined in Exercise 3.

Outline a test driver for the object named Object_program (see Figs.
8.14 and 8.15).

Devise a set of test cases to be used in the unit testing of Object_program
with the test driver you outlined in Exercise 5.

Outline a test driver for the object named Source_line (see Figs. 8.14
and 8.15).



10.

11.

12.

Software Engineering Issues

Devise a set of test cases to be used in the unit testing of Source_line
with the test driver you outlined in Exercise 7.

Write a stub for Access_symtab to be used in the top-down testing of
the modular structure in Figs. 8.10 and 8.11.

Wrrite a stub for P1_read_source to be used in the top-down testing of
the modular structure in Figs. 8.10 and 8.11.

Write stubs for the methods of the object Opcode_table (see Figs. 8.14
and 8.15).

Write stubs for the methods of the object Source_line (see Figs. 8.14
and 8.15).
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